Compensation of thermal aberrations in high-precision wide-aperture interferometers

Dmitry Silin

Institute of Applied Physics of the Russian Academy of Sciences Nizhny Novgorod, Russia

Commercial wide-aperture interferometers

Wyko, Zygo

Apertures up to 810 mm

Measurement accuracy: ~ $\lambda/40 - \lambda/50$ (13-16 nm) RMS

Wide-aperture IAP RAS interferometers

Ø250 mm

Ø630 mm

Fizeau interferometers

Measurement accuracy: $\lambda/1000 (0.6 \text{ nm}) \text{ RMS}$

Reasons of thermal aberrations

Stability of the reference plate form with RMS≈0.6 nm requires:

$$\frac{\partial T}{\partial t}$$
 ~0.6 °C/h

Stability of the reference plate form with RMS≈0.6 nm requires:

 $\frac{\partial T}{\partial t}$ ~0.009 °C/h

Ways to reduce thermal aberrations

1. Maintaining a stable room temperature

 $\frac{\partial T}{\partial t}$ ~0.009 °C/h is required for accuracy λ /1000 on aperture Ø630 mm

2. Using optical materials with a low coefficient of thermal expansion

3. Creation of a theoretical or an empirical model for predicting changes in the shape of the reference plate and the sample in time based on the results of measuring the air temperature

Location of temperature sensors

- Sensors cannot be located on the working surfaces of the reference plates
- The simplest variant was tested in which sensors were located in the air and only at those points where they do not impede the operation of the interferometer

Empirical model

T – average temperature from three sensors

The temperature T_{in} of the inner sides of both reference plates:

 $T_{\rm in}(n) = T_{\rm in}(n-1) + k_{\rm in} [T(n) - T_{\rm in}(n-1)]$

The temperature T_{out1} of the outer side of TF:

$$T_{\text{out1}}(n) = T_{\text{out1}}(n-1) + k_{\text{out1}} [T(n) - T_{\text{out1}}(n-1)]$$

The temperature T_{out2} of the outer side of RF:

$$T_{\text{out2}}(n) = T_{\text{out2}}(n-1) + k_{\text{out2}} \left[T(n) - T_{\text{out2}}(n-1) \right]$$

n - number of measurement, interval for taking temperatures from sensors: 1 minute

When the distance between the plates is 30 mm, the empirical values of the coefficients are: $k_{in}=1/95$, $k_{out1}=1/65$, $k_{out2}=1/95$ for 250 mm interferometer $k_{in}=1/143$, $k_{out1}=1/133$, $k_{out2}=1/67$ for 630 mm interferometer

Empirical model

Simple calculation:

Sag: $\Delta h = c (T_{in} - T_{out})$

Consider round plates. In this case, the temperature deformations are spherical.

$$c = \frac{\alpha D^2}{8d}$$
 $\alpha = 0.54 \cdot 10^{-6}$ for fused silica

c≈105 nm for D=250 mm, d=40 mm c≈335 nm for D=630 mm, d=80 mm

The dependence of air temperature on time

The total sag of surface deformations of two reference plates

— model

•••• measurement results

Errors caused by thermal deformations

- •••• errors without using the model
- •••• errors after subtracting theoretical sag

Thermal aberrations were reduced >2 times.

The dependence of air temperature on time

The total sag of surface deformations of two reference plates

[—] model

•••• measurement results

Errors caused by thermal deformations

- •••• errors without using the model
- •••• errors after subtracting theoretical sag

Thermal aberrations were reduced ~7 times.

The dependence of air temperature on time

The total sag of surface deformations of two reference plates

— model

•••• measurement results

Errors caused by thermal deformations

- •••• errors without using the model
- •••• errors after subtracting theoretical sag

Thermal aberrations were reduced >4 times.

Conclusion

- 1. The empirical model was developed to predict the thermal deformations of the reference plates and samples based on the results of temperature measurements.
- 2. The developed model makes it possible to reduce the errors caused by thermal aberrations in wide-aperture interferometers.
- 3. The developed model reduces the requirements for air temperature stability for high-precision measurements.

Thank you for your attention!